ALGÈBRE LINÉAIRE - MATH111(F) Semestre d'automne — 2024-2025

Série 12: Produits scalaires

Objectifs de cette série

À la fin de cette série vous devriez être capable de

- (0.1) connaître la **définition de produit scalaire**, ainsi que quelques propriétés;
- (O.2) déterminer si une application est un produit scalaire;
- (O.3) calculer des produits scalaires, vérifier si des éléments sont orthogonaux;
- (O.4) calculer des compléments orthogonaux, et prouver des propriétés fondamentales.

Nouveau vocabulaire dans cette série

- produit scalaire (abstrait)
- produit scalaire usuel
- norme associée à un produit scalaire
- distance entre deux vecteurs
- vecteur unitaire

- vecteurs orthogonaux
- famille orthogonale
- famille orthonormée
- complément orthogonal

Noyau d'exercices

1.1 Produits scalaires

Exercice 1 (Premières propriétés)
Soient

$$\mathbf{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}, \ \mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \text{ et } \mathbf{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$$

dans \mathbb{R}^n On rappelle que

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i \in \mathbb{R}$$

est le **produit scalaire usuel** de \mathbb{R}^n . Montrer que

- (a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$;
- (b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$;
- (c) $(\alpha \mathbf{u}) \cdot \mathbf{v} = \alpha(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (\alpha \mathbf{v})$, pour tout $\alpha \in \mathbb{R}$;
- (d) $\mathbf{u} \cdot \mathbf{u} \ge 0$, et $\mathbf{u} \cdot \mathbf{u} = 0$ si et seulement si $\mathbf{u} = \mathbf{0}$.

Exercice 2 (Produit scalaire sur \mathbb{R}^n associé à une matrice inversible)

On rappelle que $\mathbf{u} \cdot \mathbf{v} \in \mathbb{R}$ désigne le **produit scalaire usuel** de $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. Montrer que si $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ est inversible, alors l'application $(\ |\): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ donnée par

$$(\mathbf{u}|\mathbf{v}) = (A\mathbf{u}) \cdot (A\mathbf{v})$$

pour tous $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ est un produit scalaire.

Exercice 3 (Produits scalaires sur \mathbb{P}_n)

Soient $a, b \in \mathbb{R}$ avec a < b. Montrer que l'application $(|) : \mathbb{P}_n \times \mathbb{P}_n \to \mathbb{R}$ donnée par

$$(p|q) = \int_{a}^{b} p(t)q(t)dt$$

pour tous $p, q \in \mathbb{P}_n$ est un produit scalaire.

1.2 Norme, distance et orthogonalité

Exercice 4 (Calculs du produit scalaire usuel dans \mathbb{R}^3)

On considère le produit scalaire usuel de \mathbb{R}^3 .

(a) Trouver un vecteur non nul orthogonal à

$$\mathbf{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

(b) Soient

$$\mathbf{u} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}, \ \mathbf{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \text{ et } \mathbf{w} = \begin{pmatrix} 5 \\ 6 \\ 0 \end{pmatrix}.$$

Calculer $\mathbf{u} \cdot \mathbf{v}$ et $\mathbf{v} \cdot \mathbf{w}$, ainsi que

$$\frac{u\cdot w}{\|v\|},\ \frac{1}{w\cdot w}w\ \text{et}\ \frac{u\cdot w}{\|v\|}v.$$

- (c) Calculer la distance entre \mathbf{u} et \mathbf{v} , et la distance entre \mathbf{u} et \mathbf{w} .
- (d) Calculer les vecteurs unitaires correspondant à **u**, **v** et **w**, pointant dans la même direction que le vecteur original.

Exercice 5 (Famille orthogonale dans \mathbb{P}_n)

On considère le produit scalaire ($\ |\):\mathbb{P}_n\times\mathbb{P}_n\to\mathbb{R}$ donné par

$$(p|q) = \int_{-1}^{1} p(t)q(t)dt$$

pour tous $p, q \in \mathbb{P}_n$. Montrer que la famille $\mathscr{F} = \{1, t, 1 - 3t^2\}$ est orthogonale, mais pas orthonormée. Est-ce que F est libre?

Complément orthogonal 1.3

Exercice 6 (Complément orthogonal dans \mathbb{R}^3) Soit

$$\mathbf{v} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
.

Déterminer l'ensemble W formé des vecteurs orthogonaux à v. Est-ce un espace vectoriel ? Si oui, de quelle dimension?

Exercice 7 (Complément orthogonal)

Soit $(\ \): V \times V \to \mathbb{R}$ un produit scalaire sur un espace vectoriel V et soir $S \subseteq V$ une partie non vide. Montrer que

$$S^{\perp} = \{ v \in V : (v|s) = 0 \text{ pour tout } s \in S \} \subseteq V$$

est un sous-espace vectoriel de V, que l'on appelle le sous-espace vectoriel **orthogonal** à S.

Pour compléter la pratique

Produits scalaires

Exercice 8 (Produit scalaire sur $\mathbb{M}_{n\times m}(\mathbb{R})$)

Montrer que l'application $(\ |\): \mathbb{M}_{n \times m}(\mathbb{R}) \times \mathbb{M}_{n \times m}(\mathbb{R}) \to \mathbb{R}$ donnée par

$$(A|B) = \operatorname{Tr}(A^{\mathrm{T}}B)$$

pour toutes les matrices $A, B \in \mathbb{M}_{n \times m}(\mathbb{R})$ est un produit scalaire.

2.2Norme, distance et orthogonalité

Exercice 9 (Famille non orthogonale dans $M_{2\times 2}(\mathbb{R})$)

On considère le produit scalaire $(\ |\): \mathbb{M}_{2\times 2}(\mathbb{R}) \times \mathbb{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ donné par

$$(A|B) = \operatorname{Tr}(A^{\mathrm{T}}B)$$

pour toutes les matrices $A, B \in \mathbb{M}_{2 \times 2}(\mathbb{R})$.

Montrez que la famille

$$\mathscr{F} = \left\{ \underbrace{\begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix}}_{A}, \underbrace{\begin{pmatrix} -4 & 2 \\ 0 & -3 \end{pmatrix}}_{B}, \underbrace{\begin{pmatrix} 1 & 0 \\ -\frac{1}{4} & 1 \end{pmatrix}}_{C} \right\}$$

n'est pas orthogonale. Est-ce que \mathcal{F} est libre? Calculer $\|A\|^2$, $\|B\|^2$ et $\|C\|^2$.

2.3 Complément orthogonal

Exercice 10 (Dimension du complément orthogonal) Soient W un sous-espace vectoriel de \mathbb{R}^n et $\mathcal{B} = \{\mathbf{w}_1, \dots, \mathbf{w}_q\} \subseteq W$ une base de W. Montrer que

$$\dim(W) + \dim(W^{\perp}) = n.$$